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Abstract

A three-degree-of-freedom aeroelastic typical section with a trailing-edge control surface is theoretically modelled,

including nonlinear springs for both the nonlinear description of the torsional stiffness and of the hinge elastic moment.

Furthermore, augmented states for linear unsteady aerodynamic of 2-D incompressible potential flow, have been

considered in the model. First, the system response is determined by numerically integrating the governing equations

using a standard Runge–Kutta algorithm in conjunction with a ‘shooting method’. The numerical analysis has revealed

the presence of stable and unstable limit cycles, along with stability reversal in the neighborhood of a Hopf bifurcation.

Consequently, the equations of motion are analysed by a singular perturbation technique based on the normal-form

method. This method, originally introduced by strictly applying a resonance condition, is herein extended by applying a

near-resonance condition in order to improve the semi-analytical description of the stability reversal behavior.

Therefore, amplitudes and frequencies of limit cycles depending on the flow speed V are obtained from the normal-form

equations, and the terms which are essentially responsible for the nonlinear system behavior are identified.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of the speed above which the system becomes unstable is one of the most relevant objectives in

studying linear and nonlinear fixed-wing aeroelasticity. If the instability involves oscillations, the phenomenon is called

flutter, otherwise it is called divergence. According to linear stability analysis, the oscillations beyond the so-called

(linear) flutter speed VF are not damped and their amplitude grows indefinitely, from a mathematical point of view,

leading to the collapse of the wing structure. In the case of nonlinear aeroelastic systems, more attention must be paid to

the effects that some kinds of nonlinearities may induce on flutter. In Dowell et al. (1997) an exhaustive review of the

scenario of nonlinear aeroelastic phenomena has been presented. Within this framework, nonlinear torsional stiffness

and control-surface freeplay have a relevant role, as one can see in the technical literature over the last decade; like in

Lee and Tron (1989), Alighanbari and Price (1996), Lee et al. (1997), Lacabanne (1997), Conner et al. (1997), Lee et al.

(1998). In these papers the nonlinear aeroelastic vibration of a 2-degree of freedom (2-dof) pitching and plunging airfoil

or 3-degree of freedom (3-dof) pitching, plunging airfoil with a control-surface-independent rotation with structural

freeplay nonlinearities have been numerically studied and sometimes compared with experimental results. Indeed, these

kinds of nonlinear aeroelastic models are typically considered as tools by the researchers, both to validate the used

physical simplified model by means of comparison with experimental results and, above all, to validate numerical and
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analytical methodology to study aeroelastic systems; also significant in this case is the use for this nonlinear aeroelastic

model of signal-processing theory, by means of an input/output system analysis, to identify the nonlinear behavior of

the system, as shown in Mastroddi and Bettoli (1999) and Alighanbari and Lee (2003).

Focusing attention on this nonlinear aeroelastic system when exhibiting limit-cycle oscillations (LCO), the nonlinear-

flutter behavior may be classified into two types: benign and explosive flutter. In the first case, above the linear flutter

speed, the system tends to stable limit-cycle oscillations (LCOs), leading to a supercritical Hopf bifurcation; whereas in

the second case, even below the linear flutter speed, the system, for small values of VF � V ; may experience instability,

provided that the initial conditions are sufficiently high, namely a subcritical Hopf bifurcation. From a practical point

of view, the second case (known as ‘explosive’ or ‘destructive’ flutter, see Fig. 1), implies that below the linear flutter

speed VF (as obtained from the linear analysis) the system experiences a sudden onset of a destructive instability.

However, an even more frightening implication is that the linear flutter speed is not at all a safe prediction, since this

destructive instability may occur even below the linear flutter speed VF ; provided that the wing experiences a sufficiently

high perturbation as, for example, an encountered gust. It should be emphasized that such an analysis is not used in the

actual design of aircraft.

However, there is well-known experimental evidence, e.g., in Lacabanne (1997), Chen et al. (1998) and Matsushita

et al. (2001), as well as numerical evidence as shown in Woolston et al. (1957), Lee et al. (2002) and Dessi et al. (2002),

that a combination of (i) small-amplitude unstable limit cycles, and (ii) large-amplitudes stable limit cycles may occur

below the linear flutter speed, i.e., the possibility, under suitable initial conditions, of finite-amplitude LCOs below the

linear flutter speed. This phenomenon is depicted in Fig. 2, which shows a subcritical Hopf bifurcation exhibiting a so-

called turning point [Nayfeh and Balachandran (1994)] at a velocity lower than the (linear) flutter speed, determining a

‘knee’ in the bifurcation diagram where the unstable limit-cycle (sub-critical Hopf bifurcation) reverses into a stable
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Fig. 1. Hopf bifurcation of pitchfork-like shape.

Fig. 2. Hopf bifurcation of knee-like shape.
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one. For instance, in Dessi et al. (2002) it has been underlined how a proper choice of some structural parameter in a 2-

dof typical section model with a nonlinear spring (e.g., the distance between the aerodynamic center and the elastic

center) can determine the bifurcation type (e.g., limit-cycle stability and reversal) in the neighborhood of the linear

flutter speed VF :
In this paper both the standard LCO analysis in the neighborhood of the flutter speed and the higher-order analysis,

(i.e., LCO stability reversal at the turning point) have been applied to a 3-dof aeroelastic system. Furthermore, the

results obtained via numerical simulation have been compared with those given by using a perturbation technique;

specifically, the normal-form (NF) method has been applied for this purpose. As a natural consequence, the semi-

analytic procedure associated with the NF analysis has allowed the identification of the nonlinear contributions

responsible in the mathematical model for the reversal behavior. The main features of the bifurcation diagrams—

critical point (linear flutter speed), turning point abscissa (minimum speed for undamped oscillations) and related

amplitudes—have been studied with respect to some aeroelastic parameters characterizing a 2-D airfoil with a trailing-

edge (TE) control surface.

The mathematical model for the 2-D airfoil aeroelasticity study, with a TE control surface, with nonlinear springs, is

presented in Section 2. Next, in Section 3, the standard NF approach is briefly described. Finally, in Section 4, some

results on different numerical simulations obtained with numerical integration and the NF singular perturbation

technique are shown.

2. Equations of motion

Consider a 3-dof airfoil, elastically supported by a linear plunge spring and a nonlinear torsional spring. It is

equipped with a control surface (flap) constrained to the wing with a nonlinear torsional spring (see Fig. 3). Using

standard notation, the plunging deflection is denoted by h; positive in the downward direction, a is the pitch angle about

the elastic axis, positive with nose up, and b is the flap angle, positive when the TE surface is moved down.

The elastic axis is located at a distance ahb from the mid-chord, where b is half the chord, while the wing mass center

is located at a distance xab from the elastic axis. The axis of rotation for the flap is located at a distance bhb from the

mid-chord, while the flap mass center is located at a distance xbb from the flap hinge. All the previous distances are

positive when measured towards the TE of the airfoil.

The aeroelastic equations of motion for the linear model are as originally found in Theodorsen (1935). The extension

of the typical-section equations to the case of nonlinear torsional springs can easily be achieved as in the following (see

the appendix for details):

.xþ xa .aþ xb .bþ
O2

1

U2
x ¼ p;

xa

r2
a

.xþ .aþ ½r2
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1
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1
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Fig. 3. Three-degree-of-freedom model of a typical section with control surface.
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where the overdot denotes differentiation with respect to the nondimensional time t; defined as t ¼ V t=b; x ¼ h=b is the

nondimensional plunge displacement of the elastic axis, ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ja=mb2

p
is the reduced radius of gyration about the

elastic axis, rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jb=mb2

p
is the reduced radius of gyration about the flap hinge, m ¼ prb2=m is the mass ratio; note

that MaðaÞ represents the overall contribution of the torsional spring moment of the wing section, while MbðbÞ
represents the torsional spring moment of the flap, both including the linear and nonlinear part, respectively.

Furthermore, O1 and O2 are given by O1 ¼ ox=oa and O2 ¼ ob=oa; where ox; oa and ob are the uncoupled plunging,

pitching and flapping natural frequencies, respectively; U is defined as U ¼ V=boa; where V is the dimensional speed.

Moreover, p and r are, respectively, the lift and pitch aerodynamic moment for the wing, whereas s is the pitching

moment acting on the flap. For incompressible two-dimensional flow, by combining the analytical expressions of the

forces in the frequency domain given by Theodorsen (1935) with the expressions given in Fung (1955) in the time

domain for plunge/pitch typical section, one obtains

p ¼ �
1

m
½’aþ .x� ah .a� ðT4=pÞ ’b� ðT1=pÞ .b� 2uðw3=4Þ�;

r ¼ �
1

mr2
a
½ %ah ’aþ ð1=8 þ a2

hÞ.a� ah
.xþ ðT4=pþ T10=pÞbþ ðT1=p� T8=p� ðbh � ahÞT4=pþ 1=2ðT11=pÞÞ ’b

� ðT7=pþ ðbh � ahÞT1=pÞ .b� 2uðw3=4Þ�;

s ¼ �
1

mr2
b

½ð�2T9=p� T1=p� %ahT4=pÞ’aþ 2ðT13=pÞ.aþ ðT5=p2 � T4T10=p2Þb� 1=2ðT4=pÞðT11=pÞ ’b� ðT3=p2Þ .b

� ðT1=pÞ.xþ ðT12=pÞuðw3=4Þ�; ð2Þ

where the circulatory part of the lift and pitching moments denoted by uðw3=4Þ in the above expressions is given, in the

case of zero initial conditions, by

uðw3=4Þ ¼
Z t

0

fðt� sÞ ’w3=4ðsÞ ds ð3Þ

with w3=4ðtÞ ¼ ’xðtÞ þ %ah ’aðtÞ þ aðtÞ þ ðT10=pÞ ’bþ ðT11=2pÞ .b; %ah ¼ 1=2ð1 � ahÞ; and fðtÞ being the Wagner function [see

Theodorsen (1935) for the definition of Tis]. Using the classical finite-state approximation for the Wagner function f
introduced in Jones (1940) [see also [Edwards et al. (1979)] for an equivalent procedure in the Laplace domain], the

problem may be recast (Dessi et al., 2002) as a system of eight first-order differential equations,

’w ¼ AðUÞwþ rðw;UÞ; ð4Þ

where w ¼ f’x; ’a; ’b; ’u; x; a; b; ugT is the state-space vector, AðUÞ is the linear part of the equations of motion as obtained

by Eqs. (1) and (2) and rðw;UÞ is the vector of nonlinear terms.

Using the linear coordinate transformation w ¼ Rz induced by the local eigenproblem AðUF ÞR ¼ RK; the following

linearly diagonal format is obtained:

’z ¼ Kzþ fðz;UÞ; ð5Þ

which is the starting point for the application of the NF technique.

It is worth pointing out that, from a modelling point of view, Eq. (4) is quite representative of an aeroelastic system

exhibiting a nonlinear behavior in the sense that, e.g., its linear portion can be described with standard commercial

codes. Indeed, by using a modal description for the structures and a finite-state representation for the aerodynamics

(Morino et al. 1995), the displacements with respect to an equilibrium solution (i.e., the fixed-wing trim conditions) at

given locations and the unsteady loads have to be determined. Thus, introducing a set of N generalized coordinates, and

N þ M additional states composed by the N first time derivatives of the generalized coordinates and the M

aerodynamic states, the state space vector can be written in this general case as

wT ¼ fq1; q2;y; qN ; qNþ1; qNþ2;y; q2NþMg: ð6Þ

3. Normal-form analysis

In this section the essentials of the normal-form (NF) method applied for the nonlinear analysis of higher-order Hopf

bifurcations is presented. It is a general singular perturbation technique, based on the idea that a nonlinear system can

be simplified by a suitable transformation of the state-space variables in the phase space. This goal is achieved by two

ARTICLE IN PRESS
D. Dessi, F. Mastroddi / Journal of Fluids and Structures 19 (2004) 765–783768



different steps: by reducing the number of equations and by using the NF method to eliminate in the reduced equations

the nonlinear terms that do not contribute significantly to the solution. For both steps, the selection of the linear and

nonlinear terms is performed by introducing the so-called ‘‘near-resonance condition’’ (Dessi et al., 2002). Next, the

methodology is presented, for the limited case of algebraic nonlinearities.

Consider a one-parameter system of N nonlinear differential equations

’xn ¼ Hnðx1; x2;y; xn;y; xN ; mÞ; n ¼ 1;y;N; ð7Þ

with N unknowns, and we assume that Hnðx1;y; xN ; mÞ be an analytic function (in particular a polynomial) of the

variables x1;y; xN and the parameter m:
There are two ways of dealing with the system parameter m: (i) adding a supplementary equation ’m ¼ 0 to Eq. (7), or

(ii) using a rescaling parameter e to provide an expansion for m: In the first case, the parameter m is considered like a

state-space variable and the NF-method has to be applied to the ‘‘augmented system’’ of N þ 1 equations; this generally

simplifies the numerical implementation of the NF technique. In the second case, the cascade of equations obtained is

ordered with respect to the rescaling parameter e (which has to be eliminated to turn back to the original variables) and

not, as in the first case, with respect to a norm of the unknown; nevertheless, this version of the NF method seems to be

more intuitive and it will be preferred in the following. Note that, for the present problem, no practical difference in the

numerical results can be detected between the two versions of the NF method.

Taking a Taylor expansion of Hnðx; mÞ around xn ¼ 0 with n ¼ 1;y;N and assuming Hnð0; mÞ ¼ 0; the dynamical

system may be re-written as

’xn ¼ ÂnpðmÞxn þ
XN

p;q¼1

b̂npqðmÞxpxq þ
XN

p;q;r¼1

ĉnpqrðmÞxpxqxr þ? : ð8Þ

For the sake of conciseness in outlining the NF method applied to higher-order Hopf bifurcations, it is convenient to re-

write the previous equation using the vector notation

’x ¼ #AðmÞxþ #bðx; x; mÞ þ #cðx; x; x; mÞ þ Oðjjxjj4Þ; ð9Þ

where #A is an N � N matrix, whereas #b and #c are a bilinear and a trilinear form, respectively.

Let #liðmÞ denote the eigenvalues of #AðmÞ: In the following, we assume that for a given value of m (which, without loss

of generality, we assume to be zero) the system becomes unstable. Specifically, we set li ¼ #lið0Þ:
Moreover, we assume also that l1 ¼ %l2 ¼ io and that Real½li�o0 for i ¼ 3;y;N : In addition, we assume that in the

positive neighborhood of m ¼ 0; #lR
1 ¼ Real½#l1� > 0 and that Real½#li�o0 (i ¼ 3;y;N).

On the basis of the above assumptions, we can write

#A ¼ #A0 þ m #A1 þ Oðm2Þ: ð10Þ

Next, we also assume that lj eigenvalues of the matrix #A0 are distinct. Hence, #A0 will have linearly independent right

eigenvectors ri; with R ¼ ½r1; r2;y; rN � such that

R�1 #A0R ¼ K; ð11Þ

where K ¼ diagðl1;y; lN Þ is diagonal matrix with elements equal to l1;y; lN :
Then, setting x ¼ Rz and pre-multiplying Eq. (9) by R�1; one has

’z ¼ ðK þ mA1Þzþ bðz; zÞ þ cðz; z; zÞ þ Oðjjzjj3Þ þ Oðm2Þ þ Oðmjjzjj2Þ;

where A1 ¼ R�1 #A1R; bðz; zÞ ¼ R�1 #bðRz;Rz; 0Þ; and cðz; z; zÞ ¼ R�1 #cðRz; Rz;Rz; 0Þ: Next, we introduce the ordering

parameter e such that z ¼ eu: Note that the introduction of this new state-space variable which is a typical issue in

perturbation methods (Nayfeh and Balachandran (1994)) allows one to scale the contributions of any terms in each

equations on the base of the amplitude of the original state-space variable z: Hence,

’u ¼ Kuþ mA1uþ ebðu; uÞ þ e2cðu; u; uÞ þ Oðe3Þ þ Oðm2Þ þ OðmeÞ: ð12Þ

For simplicity, in this work we can assume that the even nonlinear terms vanish (this is true because the system is

symmetric, so that the equations are invariant if u is replaced by �u). Then, we have

’u ¼ Kuþ mA1uþ e2cðu; u; uÞ þ Oðe4Þ þ Oðm2Þ þ Oðme2Þ; ð13Þ

since the even terms in u (in particular, the fourth-order terms) have been assumed to vanish. Finally, in order to

balance the nonlinear terms with the increase in the linear terms, mA1u (this will be clearer later), we choose

m ¼ 7e2: ð14Þ
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Then, we have

’u ¼ Kuþ e2½Auþ cðu; u; uÞ� þ Oðe4Þ ð15Þ

with A ¼ 7A1:
The above problem may be written as

’u ¼ Kuþ e2fð2ÞðuÞ þ Oðe4Þ ð16Þ

with fð2ÞðuÞ ¼ Auþ cðu; u; uÞ: The normal-form method consists of simplifying the differential problem through the

‘‘near-identity’’ coordinate transformation

u ¼ yþ e2wð2ÞðyÞ þ Oðe4Þ; ð17Þ

where wð2ÞðyÞ is to be chosen so as to simplify the problem. Combining Eqs. (16) and (17) one obtains

’u ¼ ’yþ e2W’yþ Oðe4Þ ¼ Kðyþ e2wð2ÞðyÞÞ þ e2fð2Þðyþ?Þ þ Oðe4Þ; ð18Þ

where W ¼ @wð2Þ=@y; or, using ðIþ e2WÞ�1 ¼ I� e2Wþ Oðe4Þ;

’y ¼ ðI� e2WÞ½Kðyþ e2wð2ÞðyÞÞ þ e2fð2ÞðyÞ� þ Oðe4Þ: ð19Þ

Collecting same-order terms yields

’y ¼ Kyþ e2gð2ÞðyÞ þ Oðe4Þ; ð20Þ

where

gð2ÞðyÞ ¼ �WKyþ Kwð2ÞðyÞ þ fð2ÞðyÞ: ð21Þ

Eq. (20) is formally equal to Eq. (16) although the vector field wð2ÞðyÞ (and its derivative) has to be defined in order to

simplify the transformed problem given by Eq. (20). Next, we choose wð2ÞðyÞ so as to remove all the terms that cause

unnecessary complexity in Eq. (16). To be specific, using the indicial notations, fð2ÞðyÞ ¼ Ayþ cðy; y; yÞ may be written

as

f ð2Þ
n ðykÞ ¼

X
anpyp þ

X
cnpqrypyqyr: ð22Þ

Thus, the objective of choosing Eq. (17) so as to render Eq. (20) simpler than Eq. (16), is achieved by choosing for

wð2ÞðyÞ to have the same functional dependence as Eq. (22), i.e.,

wð2Þ
n ðykÞ ¼

X
anpyp þ

X
gnpqrypyqyr; ð23Þ

where anp and gnpqr are to be determined (see later). This implies

w
ð2Þ
n;k ¼

@wð2Þ
n

@yk

¼
X

anpdpk þ
X

gnpqrðdpkyqyr þ ypdqkyr þ ypyqdrkÞ: ð24Þ

Combining Eqs. (21), (22) and (24), one obtains

gð2Þn ðykÞ ¼
X

wð2Þ
n;plpyp þ lnwð2Þ

n ðykÞ þ fnðykÞ

¼ �
X

anplpyp �
X

gnpqrðlp þ lq þ lrÞypyqyr þ ln

X
anpyp þ

X
gnpqrypyqyr

� �
þ

X
anpyp þ

X
cnpqrypyqyr

� �
¼
X

½anp � ðlp � lnÞanp�yp þ
X

½cnpqr � ðlp þ lq þ lr � lnÞgnpqr�ypyqyr: ð25Þ

Next, we choose anp and gnpqr so as to eliminate from the term given by Eq. (25) as many terms as possible. Specifically,

this objective may be achieved if one sets

anp ¼

anp

lp � ln

if lp � lna0;

0 otherwise;

8<
: ð26Þ

gnpqr ¼

cnpqr

lp þ lq þ lr � ln

if lp þ lq þ lr � lna0;

0 otherwise:

8<
: ð27Þ
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These equations, combined with Eq. (23), define completely the vector wð2ÞðyÞ: Thus, one can go back to the

‘‘transformed problem’’ given by Eq. (20), where gð2ÞðykÞ is now given by

gð2Þn ðykÞ ¼
X
pAIn

p

anpyp þ
X

pqrAIn
pqr

cnpqrypyqyr; ð28Þ

where, according to Eqs. (26) and (27) In
p and In

pqr are given by

In
p ¼ fðn; pÞjlp ¼ lng; ð29Þ

In
pqr ¼ fðn; p; q; rÞjlp þ lq þ lr ¼ lng: ð30Þ

Eq. (20), with gð2ÞðyÞ given by Eqs. (28)–(30), is indeed simpler to solve then Eq. (16).

It is important to remark that, in the case of dynamical systems exhibiting higher-order Hopf bifurcations, also the

fourth-order terms have to be analysed because they may significantly contribute to the solution. This is the case of the

aeroelastic system considered in this paper, where the fourth-order terms were not present in Eq. (16) but they are

generated by the second-order normal-form procedure (this statement can be demonstrated by recasting Eq. (4) in the

form of Eq. (8) and assuming cubic nonlinearities). Therefore, considering Eq. (20) and considering the fourth-order

terms, the following equation needs to be simplified by the NF procedure:

’y ¼ Kyþ e2gð2ÞðyÞ þ e4fð4ÞðyÞ þ Oðe6Þ: ð31Þ

Again, the NF-method consists of searching for a new state-space coordinates through the ‘‘near-identity’’

transformation

y ¼ vþ e4wð4ÞðvÞ þ Oðe6Þ; ð32Þ

where wð4ÞðyÞ is to be chosen so as to simplify Eq. (31). The transformed dynamical system will be in the form

’v ¼ Kvþ e2gð2ÞðvÞ þ e4gð4ÞðvÞ þ Oðe6Þ: ð33Þ

The procedure to determine both the unknown coordinate transformation wð4ÞðvÞ and the resonant terms gð4ÞðvÞ is

formally identical to those outlined for the second-order terms (Eqs. (22)–(30)).

For Hopf bifurcation analysed in the frame of the Center Manifold theorem, Eq. (33) in the unknown v (the so-called

‘‘resonant’’ equation) will include as significant only scalar equations corresponding to the critical eigenvalues l1 ¼
%l1 ¼ io; this implies, by using trivially the coordinate transformation u ¼ y ¼ v (higher-order terms can be disregarded

in Eqs. (14), (17) and (32)), that the relevant part of the nonlinear dynamics of the system will be given by the

‘‘manifold’’ associated to the pair of complex conjugate equations

’u1 ¼ l1u1 þ m
X
pAI1

p

a1pup þ
X

pqrAI1
pqr

c1pqrupuqur þ
X

pqrstAI1
pqrst

e1pqrstupuqurusut;

’u2 ¼ l2u2 þ m
X
pAI2

p

a2pup þ
X

pqrAI2
pqr

c2pqrupuqur þ
X

pqrstAI2
pqrst

e2pqrstupuqurusut; ð34Þ

where e1pqrst ¼ %e2pqrst is the generic coefficient of the fifth-order monomial in the variable uk:

In
pqrst ¼ fðn; p; q; r; s; tÞjlp þ lq þ lr þ ls þ lt ¼ lng: ð35Þ

However, it may happen that the center manifold hypothesis is violated, i.e., the manifold embedding the solution

requires more coordinates ui1 ; ui2 ;y to be satisfactorily described (this point will be illustrated for higher-order Hopf

bifurcations investigated in the following section). In other words, this implies that the coordinates ui1 ; ui2 ;y
(associated to the damped eigenvalues) contribute significantly to the solution.

In this case, the natural way to improve the accuracy of the solution could be to consider more equations than those

indicated by the Center Manifold theorem and to apply the zero resonant condition (as in Eqs. (26) and (27)) to retain

the nonlinear terms in the transformed problem in the state-space variable v: This procedure, however, might be

inconsistent and, therefore, it is necessary also to loosen the zero-resonant condition stated in standard NF analysis,

introducing a more appropriate ‘near-resonant’ condition (Dessi et al., 2002). It means that Eqs. (26)–(27) are replaced

by the following inequality conditions:

anp ¼

anp

lp � ln

if jjlp � lnjjpr;

0 otherwise;

8<
: ð36Þ
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gnpqr ¼

cnpqr

lp þ lq þ lr � ln

if jjlp þ lq þ lr � lnjjpr;

0 otherwise;

8<
: ð37Þ

where jj:jj is the Euclidean norm, r is a small arbitrary positive real number such that as it becomes larger, more terms

are retained in Eq. (34).

A geometrical interpretation of how the terms are chosen in the resonant equation is given in the following way.

There is a one-to-one correspondence between terms in Eqs. (20) (or Eq. (33)) and the following complex quantities

#lði; j1;y; jmÞ :¼ li � ðlj1 þ lj2 þyþ ljm Þy ð38Þ

denoted as #l-points. Plotting all #l-points in the complex plane corresponding to non-vanishing terms, the condition

jj:jjpr indicates that only the terms located inside a circle of radius r are retained in Eqs. (20) and (33). At this point, the

smallest value of r; say r�; that provides a good approximation for the solution of Eq. (16) has to be determined. This

‘optimum’ value of r exists by considering the two opposite limiting cases: (i) for r ¼ 0 a pair of complex conjugate

resonant equation with nonlinear terms up to the fifth order are obtained; (ii) for r arbitrarily large, all the equations

with all the original cubic nonlinear terms are included (this is equivalent to a trivial diagonalization procedure of

Eq. (7)).

An optimum r�Að0;NÞ is provided in this paper as illustrated in the next section by a trial and error procedure.

4. Numerical results

In this section, the above formulation is applied to study the stability of the 3-dof typical section defined by Eq. (1) in

the neighborhood of the linear flutter speed UF : As mentioned before, all the analysis shown herein has been performed

on the aeroelastic equations recast in the form of Eq. (4). In order to validate the procedure by which the first-order

form of the aeroelastic equations was obtained, a linear stability analysis has been successfully performed on the typical

section considered in Edwards et al. (1979), obtaining the same flutter speed. Next, a nonlinear model has been

considered, assuming the pitching moment given by a cubic function MaðaÞ ¼ c1aaþ c3aa3; as in Alighanbari and Price

(1996), and MbðbÞ ¼ b: The values of the coefficients considered in this case are m ¼ 100; xa ¼ 0:25; O1 ¼ 1:2; ra ¼ 0:5;
xb ¼ 0:0125; O2 ¼ 3:5; rb ¼ 0:0791; bh ¼ 0:6; whereas ah assumes different values in several simulations.

The flutter speed and frequency are obtained by a linear standard eigenanalysis (Fig. 4; the poles are normalized with

respect to oa for sake of clarity). In the case of ah ¼ �0:5; one obtains UF ¼ 4:6724 and oF ¼ 0:268; (note that the

corresponding values for the same typical section without flap are UF ¼ 4:9371 and oF ¼ 0:255; therefore, adding the

flap to the wing seems to lower the flutter speed and to rise slightly the flutter frequency). [Note also that the linear part

of the model was also validated considering the test case presented in Edwards et al. (1979, Fig. 5, p. 368): using the

input data indicated in the reference, we obtained a dimensionless flutter speed UF ¼ VF=boa ¼ 3:003; which coincides

with the value given in the referred paper.]

In Fig. 5 the numerical LCO plunge-mode amplitude, %x; is given as function of U ; in the neighborhood of UF ; for

c3a ¼ �50; and for ah ¼ �0:50; �0:49; �0:48; �0:47 and �0:46 (note that the different values of ah correspond to

different positions of the elastic center along the chord). Specifically, these LCO amplitudes are computed with the

shooting method [see, e.g., Nayfeh and Balachandran (1994)]. It is apparent from Fig. 5 how the shape of the

bifurcation diagram changes with ah; for ahC� 0:47; the Hopf bifurcation changes from subcritical into supercritical,

and the turning point disappears, as the absolute value of ah decreases.

It is important to note that the value of the nonlinear coefficient c3a does not affect the speed at which the turning

point appears, but it determines only the LCO oscillation amplitudes. This issue is evident in Fig. 6, where the curves for

the LCO amplitudes of %x; %a and %b for the case c3a ¼ �50 are depicted together with the plunge amplitude for the case

c3a ¼ �40:
The following comments arise from a first analysis of Figs. 5 and 6 (and similar successive figures) concerning the

local study presented, in the neighborhood of the linear stability limit (i.e., when UCUF ). The first comment is that the

safe flight speed is slightly reduced, i.e., the possible onset of undamped oscillations is anticipated in correspondence of

the turning-point abscissa UTPC4:674 with respect to UFC4:677: Specifically, for UoUTP the steady-state trivial stable

solutions are reached starting from any initial conditions; for UTPpUpUF ; steady-state trivial solutions are reached

for sufficiently limited initial conditions (where the limit is essentially given by the unstable branch); finally, for U > UF ;
a LC solution type is reached for any initial conditions. Therefore, although the range given by UTPpUpUF may

appear as not too significant from a practical point of view, this becomes relevant if interpreted as a ‘boundary layer’

stability region in nonlinear aeroelastic analysis. Indeed, the second related comment is that the steady-state LCO

ARTICLE IN PRESS
D. Dessi, F. Mastroddi / Journal of Fluids and Structures 19 (2004) 765–783772



amplitudes do not continuously vary with respect to the flight-speed parameter, as there is a stability jump between the

trivial steady solutions and the LC solutions if the given initial conditions have sufficiently high values. This issue,

together with the previous one, gives as general comment that the nonlinear analysis makes the original stability limit

more fuzzy with respect to the linear one, in the sense that the transient from the stable region to the unstable one

occurs through the crossing of a thin region as function of the velocity-flow parameter ðUTPpUpUF Þ and not of an

isolated point as in the linear stability analysis or in the standard bifurcation scenario. This ‘boundary layer’ stability

region, where the most interesting nonlinear pre-critical behaviors occur, has been evaluated in the present analysis.

ARTICLE IN PRESS

-4

-2

0

2

4

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

Im
ag

in
ar

y 
pa

rt

Real part

plunge mode

pitch mode

flap mode

finite state modes

Fig. 4. Root locus for the poles of the linear part of the aeroelastic equations.

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

4.66 4.67 4.68 4.69 4.7 4.71 4.72

LC
O

 p
lu

ng
e 

am
pl

itu
de

U

a  =-0.5h

a  =-0.49h

a  =-0.48h

a  =-0.47h a  =-0.46h

Fig. 5. Pitch NL case: bifurcation plot of the plunge amplitude of LCOs with respect to the nondimensional flight speed U :

D. Dessi, F. Mastroddi / Journal of Fluids and Structures 19 (2004) 765–783 773



Next, the stability of these LCOs may be analysed by means of the Floquet theory [see, e.g., Nayfeh and

Balachandran (1994)]. The results are shown in Fig. 7, which depicts in the neighborhood of the flutter speed (for

ah ¼ �0:49) the modulus of the critical Floquet multipliers both for stable and unstable LC (i.e., those with values close

or equal to one; recall that if a Floquet multiplier is outside the unit circle, the corresponding LCO is unstable). As

indicated, the upper branch of the first Floquet curve refers to the unstable limit cycle which starts at the bifurcation

point (modulus larger than one). On the other hand, the lower branch of this curve refers to the stable limit cycle (into

which the unstable one turns at the turning point).
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Let us consider the approximate limit-cycle solutions, as obtained with the NF outlined before, and shown in Fig. 8

for the case ah ¼ �0:49: The dotted curves, as obtained by the LC steady solution of the NF method, Eq. (31),

corresponds to the fifth (curve on right) and third (curve on left) NF approximation whereas the solid curve

corresponds to the direct numerical simulation.

It should be emphasized that the NF curves are obtained using only a pair of complex conjugate equations, which

correspond to the critical eigenvalues, whereas the numerical simulation involves the complete system. It is remarkable

that the third-order approximation does not capture (not even qualitatively) the ‘knee-type’ higher-order bifurcations.

On the other hand, the fifth-order approximation detects the existence of stability reversal at the turning point, but

underestimates both the pre-flutter instability range and the LCO amplitudes. As mentioned above, the discrepancy in

the curves is explained later in terms of the inadequacy of the use of two modes (corresponding to the critical

eigenvalues) in the fifth-order analysis.

Specifically, in obtaining these results, the NF perturbation technique has been applied under the heuristic

assumption (correctly prescribed by the Hopf bifurcation theorem in the case of pitchfork bifurcations) that the modes

to be used are those identified by the center-manifold theorem [i.e., the linearly undamped or marginal modes; see, e.g.,

Guckenheimer and Holmes (1983)]; indeed, the NF approach, whenever applied to the center manifold, can give results

only for the space-state variable associated with the first mode. Furthermore, in the case of a fifth-order approximation

this assumption leads to uncorrected results because it is clearly violated even for small values of U � UF ; since the first

two pairs of damped modes become relevant as shown in Fig. 9 whose amplitudes are given by the modulus of the

unknown u3 (or u4 � %u3), and the modulus of the unknown u5 (or u6 � %u5; where the overbar indicates the complex

conjugate).

This issue implies that, using the perturbation analysis, also the contribution of other complex state variables should

be included. This was investigated as shown in Section 3. The #l-points are plotted in Fig. 10 for every combination of

i; j1;y; jm (each one corresponding to a different nonlinear term), for U ¼ UF : We obtained, by trial and error, that the
#l-points inside the curve depicted in Fig. 11 for the case ah ¼ �0:49 are considered as ‘near-resonant’ (i.e., ‘small

divisors’ in Poincaré’s terminology); in other words, this one correspondingly has the minimal set of equations that

yields a good agreement between the solution of the NF equations and that of the original equations. Specifically, if we

increased the number of #l-points, no difference was observed; on the other hand, if any of the #l-points in the ‘minimal

set’ was removed, substantial deterioration was obtained. It is worth noting that the curve in Fig. 11 is a circle: this fact

is used in Fig. 12, where the time history of
ffiffiffiffiffiffiffiffiffi
u1 %u1

p
; is plotted for increasing values of the circle radius r (i.e., adding

more and more nonlinear terms until a satisfactory solution is obtained). Good agreement with the full-system solution

is achieved in this case for r ¼ 0:1: Note that the same number of nonlinear terms was retained also in the NF
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approximation of Eq. (5) for U ¼ 4:6724; which Fig. 12 refers to. This value of r is such that no contribution is given by

the equations for u7 and u8: Thus, the obtained essential equations useful to satisfactorily describe the nonlinear

dynamics are

’u1 ¼ l1u þ
P

pAI1
p

a1pup þ
P

pqrAI1
pqr

c1pqrupuqur þ
P

pqrstAI1
pqrst

e1pqrstupuqurusut;

’u3 ¼ l3u þ
P

pAI3
p

a3pup þ
P

pqrAI3
pqr

c3pqrupuqur þ
P

pqrstAI3
pqrst

e3pqrstupuqurusut;

’u5 ¼ l5u þ
P

pAI5
p

a5pup þ
P

pqrAI5
pqr

c5pqrupuqur þ
P

pqrstAI5
pqrst

e5pqrstupuqurusut;

ð39Þ
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where u2 ¼ %u1; u4 ¼ %u3 and u5 ¼ %u6: The generic index combinations Ii;q are such that the corresponding eigenvalues

give a #l-point located inside the circle of radius r ¼ 0:1: A summary of the results is given in Fig. 13, where the absolute

value of the LCO amplitudes of u1 (critical mode), u3 and u5 are given for some values of U ; the lines refer to numerical

integration results (where the shooting method was employed), whereas the points are obtained using the NF including

the contribution of the equations associated to the #l-points located inside the circle with radius r ¼ 0:1: It is worth to

point out that all the mode amplitudes—mainly related with the structural dof—are computed by solving Eqs. (39).

In the following part of this section, we assume that MaðaÞ ¼ a and MbðbÞ ¼ c1bbþ c3bb
3 (the values of the other

typical section coefficients are unchanged). If c1b is put equal to one, the same linear flutter speed is obviously obtained
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as in the case of the typical section with a nonlinear spring in pitch. In order to make a comparison with the previous

nonlinear case, c3b ¼ �50 is assumed, giving the subcritical (pitchfork) bifurcation shown in Fig. 14. The amplitude of

plunge LCOs obtained via the shooting method is indicated with the solid line, whereas with the dashed lines the third-

and fifth-order NF approximations of the amplitude of LCOs are depicted. It is clear how the fifth-order approximation

of the unstable LCOs is improved with respect to the third order NF form analysis. If the sign of the nonlinearity is

reversed ðc3b ¼ 50Þ; the unstable limit cycle is changed into a stable one as shown in Fig. 15 (the same kind of comments

about the accuracy of NF approximations can be given again).
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A case more similar to that of freeplay in the control surfaces is obtained when c1b; the linear part of the flap restoring

moment, is decreased (in the case of freeplay, the tangent of the curve of the restoring moment at the origin is

horizontal). As long as c1b is decreased, the flutter speed reduces too. It is interesting also to note that for c1bC0:85 the

mode that becomes (linearly) unstable is no longer the plunge mode but the flap mode. This causes a significant change

in the LCOs, which are greatly reduced; this is strictly related with the derivative of the real part of the critical

eigenvalue with respect to U at UF ; which is much smaller for the flap mode than for the plunge mode. In Fig. 16, the

time history of plunge is depicted for U ¼ 4:474 > UF : As one can see in the first part of the diagram in Fig. 16 (up to
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t ¼ 180 dimensionless time), the response to given initial conditions is dominated (because of the initial conditions

themselves) by the plunge aeroelastic mode which is not, however, the mode nonlinearly involved in the LCO as clearly

shown by the NF analysis. Therefore, after a transient phase which is active up to t ¼ 800; the response stabilizes in a

LCO having a different frequency which is that of the center manifold [i.e., the imaginary part of the pitch critical

aeroelastic pole: it is worth pointing out that, from nonlinear system theory, the eigenspace associated to the critical

eigenvalue is the local approximation of the nonlinear concept of ‘‘manifold’’ for small value of parameter perturbation;

see, e.g., Guckenheimer and Holmes (1983)].

Finally, it is also worth to note that, for values of c1b close to 0:85; the plunge-mode and the flap-mode eigenvalues

cross the imaginary axis in a very small range of U ; and, therefore, a study of higher manifold bifurcations should be

required.

5. Concluding remarks

In the present paper some results about a numerical solution and a semi-analytical perturbation approach—based on

the NF method—of a 3-dof aeroelastic system with cubic nonlinearities are shown and discussed. Both torsional and

TE-flap nonlinear features are considered in the analysis of the typical section behavior. Indeed, the equations of the

described aeroelastic model, in a first-order state-space form, have allowed to apply a third-order and a fifth-order

perturbation method to find out a semi-analytical approximation of the numerical bifurcation plots, revealing both a

Hopf bifurcation (specifically, an unstable LCO) and a stability reversal behavior (turning point).

The analysis of this nonlinear aeroelastic model showed the dependence of the bifurcation diagram (pure pitchfork or

‘knee’-like shape) upon the position of the elastic center.

Moreover, the NF method has been applied as an actual tool useful to identify the nonlinear contributions

responsible in the mathematical model of the reversal behavior. The possible extension of this result could be an inverse

procedure based on the use of these indications to achieve suggestions on how to modify some system parameters in

order to improve the nonlinear flutter performances (LCO and/or reversal behavior) of a wing.
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Appendix. Model Coefficients

The aeroelastic equations of motion for nonlinear 3-D typical section with a TE flap can be written as follows:

mḧ þ Sa .aþ Sb .bþ khh ¼ L;

Saḧ þ Ja .aþ ðJb þ bðbh � ahÞSbÞ .bþ kaMaðaÞ ¼ Ma;

Sbḧ þ ðJb þ bðbh � ahÞSbÞ.aþ Jb .bþ kbMbðbÞ ¼ Mb;

ðA:1Þ

where the associated coefficients are defined in Table 1. By defining the following undimensional coefficients

x ¼ h=b; xa ¼ Sa=mb; xb ¼ Sb=mb;

o2
h ¼ kh=m; o2

a ¼ ka=Ja; o2
b ¼ kb=Jb;

r2
a ¼ Ja=mb2; r2

b ¼ Jb=mb2; m ¼ m=rpb2;

and by substituting the above relationships into Eq. (A.1), after some algebra we obtain the equations of motion in a

undimensional form

.xþ xa .aþ xb .bþ o2
hx ¼

L

mb
;

xa .xþ r2
a .aþ ðr2

b þ ðbh � ahÞxbÞ .bþ r2
ao

2
aMaðaÞ ¼

Ma

mb2
;

xb .xþ ðr2
b þ ðbh � ahÞxbÞ.aþ .bþ r2

bo
2
bMbðbÞ ¼

Mb

mb2
:

ðA:2Þ
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Furthermore, let

O1 ¼ oh=oa; O2 ¼ ob=oa;

U ¼ V=boa; t ¼ Vt=b ¼ Uoat; ðA:3Þ

so that the equations of motion become (from now on, the time derivatives are assumed to be performed with respect to

t)

.xþ xa .aþ xb .bþ
O2

1

U2
x ¼

L

mbo2
aU2

;

xa

r2
a

.xþ .aþ ½r2
b þ ðbh � ahÞxb�

1

r2
a

.bþ
1

U2
MaðaÞ ¼

Ma

r2
amb2o2

aU2
;

xb

r2
b

.xþ 1 þ ðbh � ahÞ
xb

r2
b

" #
þ .bþ

O2
2

U2
MbðbÞ ¼

Mb

r2
bmb2o2

aU2
;

where the aerodynamic forces are given by (Theodorsen, 1935, p. 419)

Lðx; a; bÞ ¼ �rU2b3o2
ap½’aþ .x� ah .a� ðT4=pÞ ’b� ðT1=pÞ .b� 2 uðw3=4Þ�;

Maðx; a; bÞ ¼ � rU2b4o2
ap½ %ah ’aþ ð1=8 þ a2

hÞ.aþ ðT4=pþ T10=pÞb

þ ðT1=p� T8=p� ðbh � ahÞT4=pþ 1=2ðT11=pÞÞ ’b

� ðT7=pþ ðbh � ahÞT1=pÞ .b� ah
.xþ 2ðah þ 1=2Þ uðw3=4Þ�;

Mbðx; a; bÞ ¼ � rU2b4o2
ap½ð�2T9=p� T1=p� %ahT4=pÞ’aþ 2ðT13=pÞ.a

þ ðT5 � T4T10Þ=pÞb� 1=2 ðT4T11=pÞ ’b� ðT3=pÞ .b

� ðT1=pÞ.x� ðT12=pÞuðw3=4Þ�: ðA:4Þ

Substituting the expression of the forces into the equation of motion, one obtains

.xþ xa .aþ xb .bþ
O2

1

U2
x ¼ p;

xa

r2
a

.xþ .aþ ½r2
b þ ðbh � ahÞxb�

1

r2
a

.bþ
1

U2
MaðaÞ ¼ r;

xb

r2
b

.xþ 1 þ ðbh � ahÞ
xb

r2
b

" #
.aþ .bþ

O2
2

U2
MbðbÞ ¼ s;

ðA:5Þ

where

p :¼
�1

m
Lðx; a;bÞ
rU2b3o2

ap
; r :¼

�1

mr2
a

Maðx; a; bÞ
rU2b4o2

ap
; s :¼

�1

mr2
b

Mbðx; a; bÞ
rU2b4o2

ap
:

ARTICLE IN PRESS

Table 1

Definitions of coefficients in Eq. (A.1)

r Mass of air per unit of volume

m Mass of the airfoil (mass of the wing per unit of length)

Sa;Sb Static moments of wing-flap and flap, respectively

Ja; Jb Moments of inertia of wing-flap and flap, respectively

ka; kh Torsional stiffness of wing and flap, respectively

ah; bh Distances of airfoil elastic center and flap hinge from airfoil mid-chord
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By multiplying the second and the third equation for r2
a and r2

b; respectively, it follows that

.xþ xa .aþ xb .bþ
O2

1

U2
x ¼ p;

xa .xþ r2
a .aþ ½r2

b þ ðbh � ahÞxb� .bþ
r2
a

U2
MaðaÞ ¼ r2

ar;

xb .xþ ½r2
b þ ðbh � ahÞxb�.aþ r2

b
.bþ

r2
bO

2
2

U2
MbðbÞ ¼ r2

bs:

ðA:6Þ

The equation of motion can be re-written in the case of presence of cubic nonlinearities only, in the following second-

order matrix form:

ðmMs þMncÞ .xþ Cnc ’xþ ðmKs þ KncÞxþ mknlðxÞ ¼ �rcuðw3=4Þ; ðA:7Þ

where [see Theodorsen (1935), for the definition of Ti’s for i ¼ 1; 2;y; 11]

mMs þMnc ¼ m

1 xa xb

xa r2
a r̂2

b

xb r̂2
b r2

b

2
64

3
75þ

1 �ah �T1=p

�ah 1=8 þ a2
h T12=p

�T1=p T12=p �T3=p

2
64

3
75

with r̂2
b ¼ r2

b þ ðbh � ahÞxb and T12=p ¼ �T7=p� ðbh � ahÞT1=p;

Cnc ¼

0 1 �T4=p

0 %ah T13

0 ð�2T9 � T1 � %ahT4Þ=p �1=2T4T11=p2

2
64

3
75;

with T13 ¼ ðT1 � T8 � ðbh � ahÞT4 þ 1=2T11Þ=pÞ: Finally, assuming the presence of nonlinearities of cubic type, or

Ma ¼ c1aaþ c3aa3 and Mb ¼ c1bbþ c3bb
3; one has

mKs þ Knc ¼ m

O2
1

U2
0 0

0 c1a
r2
a

U2
0

0 0 c1b
r2
bO

2
2

U2

2
66666664

3
77777775
þ

0 0 0

0 0 ðT4 þ T10Þ=p

0 0 ðT5 � T4T10Þ=p2

2
64

3
75;

mknlðxÞ ¼ m 0; c3a
r2
a

U2
a3; c3b

r2
bO

2
2

U2
b3

( )T

ðA:8Þ

and

rc ¼ f�2; þ2ð1=2 þ ahÞ; �T12=pg
T: ðA:9Þ
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